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Abstract

We construct supersymmetric gauge theories with new mechanisms of dy-

namical supersymmetry breaking. The models have flat directions at the

classical level, and different mechanisms lift these flat directions in different

regions of the classical moduli space. In one branch of the moduli space,

supersymmetry is broken by confinement in a novel manner. The models

contain only dimensionless couplings and have large groups of unbroken

global symmetries, making them potentially interesting for model-building.

As an illustrative application, we couple the standard model gauge group

to a model with an SU(5) global symmetry, resulting in a model with com-

posite messengers and a non-minimal spectrum of superpartner masses.
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1 Introduction

The last few years have seen a revival of interest in models in which supersymme-

try is broken at low energy scales [1, 2]. In this work, there has been a fruitful

interplay between theoretical progress in understanding dynamical supersymmetry

breaking [3, 4, 5, 6, 7] and model-building (for recent progress in gauge-mediated

model-building, see e.g. Refs. [8, 9, 10, 11, 12]).

In this paper, we construct a class of models that exhibit a new mechanism of

supersymmetry breaking. In these models, there is a classical flat direction that can

be parameterized by a composite “baryon” chiral superfield B ∼ QN , where Q is an

elementary chiral superfield. This field gets a dynamical superpotential

Wdyn ∼ Bp ∼ QNp. (1.1)

For large Q, the Kähler potential is approximately canonical in Q, so if Np > 1

the potential for B slopes toward B = 0. For small B, the models exhibit smooth

confinement (“s-confinement”) [13, 14], and the Kähler potential is smooth in B. In

this case, if p < 1 the potential for B slopes away from B = 0. Since the vacuum

energy does not vanish for any value of B, supersymmetry is broken with 〈B〉 6= 0.1

The models considered here have additional classical flat directions as well as large

groups of global symmetries. We are able to obtain a great deal of information about

the location of the global minimum in the field space, but some important properties

of the ground state depend on non-calculable strong dynamics.

We then use the models constructed above as building blocks for realistic models

of gauge-mediated supersymmetry breaking. We construct an illustrative example by

gauging a global symmetry with the standard-model gauge group. The resulting mo-

del has composite fermions that are charged under the standard-model gauge group,

and we add additional interactions so that the composite fermions obtain a Dirac

mass with elementary fields. This model can be realistic, and gives rise to interesting

phenomenology. (For the model to work, we must make some assumptions about the

signs of non-calculable Kähler terms, and the supersymmetry-breaking masses are

also non-calculable.)

This paper is organized as follows. In Section 2, we describe models that realize

the supersymmetry-breaking mechanism described above. In Section 3, we construct

gauge-mediated supersymmetry breaking models. Section 4 contains our conclusions.

Some additional supersymmetry-breaking models related to the models discussed in

1The model of Ref. [6] also breaks supersymmetry by confinement, but that model has a linear

potential at the origin.
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Section 2 are analyzed in the Appendix. These models also have classical flat direc-

tions and break supersymmetry through novel mechanisms.

2 Sp(2N)× SU(2N − 1) models

In this Section, we analyze models with gauge and global symmetry group2

G = Sp(2N) × SU(2N − 1) × [SU(2N − 1) × U(1) × U(1)R], (2.1)

where the global symmetries are written in brackets. The matter content is

Q ∼ ( , ) × (1; 1, 1),

L ∼ ( , 1) × ( ;−1,− 3
2N−1

),

Ū ∼ (1, ¯) × (¯; 0, 2N+2
2N−1

),

D̄ ∼ (1, ¯) × (1;−6,−4N),

(2.2)

and there is a tree-level superpotential

W = λQLŪ. (2.3)

The field content and superpotential of this model are reminiscent of the “3–2” model

of dynamical supersymmetry breaking [4]. (In fact we will see that the dynamics is

similar to that of the 3–2 model in one branch of the moduli space.) If we turn off the

Sp(2N) gauge coupling and the superpotential, SU(2N − 1) s-confines for any N ≥ 2

[13]. If we turn off the SU(2N − 1) gauge coupling and the superpotential, Sp(2N) is

in a non-Abelian Coulomb phase for N ≥ 6, it has a weakly-coupled dual description

for N = 4, 5, it s-confines for N = 3, and confines with a quantum-deformed moduli

space for N = 2 [13, 15].

If we include the effects of the tree-level superpotential, this theory has a classical

moduli space that can be parameterized by the gauge-invariants

MLL = LL ∼ ( ;−2,− 6
2N−1

),

B̄U = Ū2N−2D̄ ∼ ( ;−6,−4(N2−N+1)
2N−1

),

B̄D = Ū2N−1 ∼ (1; 0, 2N + 2),

(2.4)

subject to the constraints

(MLL)jk(B̄U)ℓǫkℓm1···m2N−3
= 0, (MLL)jkB̄D = 0. (2.5)

2In our conventions, the fundamental representation of Sp(2N) has dimension 2N .

2



These constraints split the moduli space into two branches: on one of them MLL = 0

and B̄U , B̄D 6= 0, and on the other MLL 6= 0 and B̄U , B̄D = 0.

2.1 The “Baryon” Branch

We first consider the branch where B̄U , B̄D 6= 0. In terms of the elementary fields,

this corresponds to the vacuum expectation values (up to gauge and flavor transfor-

mations)

〈Ū〉 =

(
v cos θ

v12N−2

)
, 〈D̄〉 =




v sin θ

0
...

0



, (2.6)

where 12N−2 is the (2N − 2)-dimensional identity matrix. Far out along this flat

direction, the SU(2N − 1) gauge group is completely broken, and the fields Q and

L get masses of order λv (for cos θ 6= 0). Below the scale λv, the effective theory is

Sp(2N) super Yang–Mills, and gaugino condensation in this theory gives rise to the

dynamical superpotential

Weff ≃ Λ3
Sp

16π2

(
4πλŪ

ΛSp

)(2N−1)/(N+1)

. (2.7)

For v ≫ ΛSU, the Kähler potential is approximately canonical in Ū , and so the

potential for Ū slopes toward Ū = 0 for N > 2. (The special case N = 2 will be

considered separately below.) However, if Ū becomes small, we must reconsider the

analysis.3

The physics for small field values depends on the relative strength of the two

gauge groups. We first consider ΛSU ≫ ΛSp. (This is the situation that would arise

if the two groups were unified at a higher scale.) In this case, the analysis above

breaks down for v <∼ ΛSU/(4π), the scale at which the massive SU(2N − 1) gauge

bosons have mass gSU v ∼ ΛSU according to “näıve dimensional analysis” [16]. For

small values of 〈B̄D〉, we can use a description where SU(2N − 1) s-confines, and we

obtain an effective theory (after integrating out states with mass ∼ λΛSU/(4π)) with

symmetry group

Geff = Sp(2N) × [SU(2N − 1) × U(1) × U(1)R] , (2.8)

3The analysis for the case cos θ = 0 is somewhat different. In that case, the Sp(2N) theory has

one light flavor that would run away if there were no other interactions. However, the runaway

direction is not D flat, and so there is no supersymmetric vacuum with cos θ = 0.
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matter content

MQD = QD̄ ∼ × (1;−5,−4N + 1),

BQ = Q2N−1 ∼ × (1; 2N − 1, 2N − 1),

B̄U = Ū2N−2D̄ ∼ ( ;−6,−4(N2−N+1)
2N−1

),

B̄D = Ū2N−1 ∼ (1; 0, 2N + 2),

(2.9)

and an effective superpotential

Weff = BQMQDB̄D. (2.10)

If this were an elementary theory, the Sp(2N) dynamics would force B̄D to run away.

This can again be described by a superpotential of the form of Eq. (2.7), but in

the regime we are now considering the Kähler potential is smooth in the field B̄D.

Because the field B̄D is composite, we know that if 〈B̄D〉 is large compared to ΛSU,

we should use the previous analysis in terms of the elementary degrees of freedom.

But this analysis shows that there is no supersymmetric vacuum for large field values,

and we conclude that supersymmetry is broken. We see that this model realizes the

mechanism of supersymmetry breaking described in the Introduction.

Note that the considerations above imply that there must be at least a local

supersymmetry-breaking minimum with 〈B̄D〉 6= 0, since there are no classical flat

directions that can connect this vacuum to the other branch of the moduli space. The

supersymmetry-breaking order parameter is

F ≃ λ(2N−1)/(N+1)ΛSpΛSU

4π

(
ΛSp

ΛSU

)3/(N+1)

. (2.11)

We see that this model has two descriptions: a “Higgs” description in which the

gauge group SU(2N − 1) is broken, and a “confining” description in which it confines.

This model therefore realizes the “complementarity” picture described in Refs. [17].

Neither of these descriptions is quantitatively under control near the vacuum of the

theory, but both pictures should be a reliable guide to qualitative features of the

low-energy physics. We are not able to determine whether or not 〈B̄U〉 is nonzero.

(This can be thought of as the question of whether the induced soft mass-squared for

B̄U is positive or negative at B̄U = 0.) If 〈B̄U〉 = 0, the global symmetry is broken

down to SU(2N − 1) × U(1), and there is a massless composite fermion

ψ ∼ (¯;−6). (2.12)
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If 〈B̄U〉 6= 0, the global symmetry is broken down to SU(2N − 2) × U(1) (where the

unbroken U(1) is a linear combination of the original U(1) and a broken SU(2N − 1)

generator), and there are massless composite fermions

ψ ∼ ( ;−30), χ ∼ (1; 0). (2.13)

In the confined description, the composite fermions correspond to the fermion compo-

nents of B̄D, and in the Higgs description they correspond to the fermion component

of D̄.

It is amusing that the model above does not have gauge anomalies if we replace

Sp(2N) by either SU(2N) or SO(2N). The SO model breaks supersymmetry by

a mechanism very similar to the one described above, but the SU model does not

break supersymmetry! The reason is that the analog of the dynamical superpotential

Eq. (2.7) in the SU model is

Weff ∼ Ū (2N−1)/(2N), (2.14)

which gives rise to a potential that runs away for large Ū . We will not analyze the

SO version of the model in this paper.

We now briefly consider the analysis for small field values when ΛSp ≫ ΛSU. The

analysis depends on the value of N .

For N = 2, the Sp(4) group has a confined description with a deformed moduli

space. The tree-level superpotential turns into a mass term that combines with the

quantum constraint to force some of the composite fields in this description to run

away. This shows that there is no supersymmetric vacuum for small fields in this

model.

For N = 3, the Sp(6) group s-confines, and the low-energy theory is an SU(5)

gauge theory with matter content ¯ ⊕ plus singlets. This theory is known to break

supersymmetry [18], so there is no supersymmetric vacuum in this model for small

fields. This mechanism leads to a class of models that are discussed in the Appendix.

For N ≥ 4, the Sp(2N) group has a dual description in terms of a Sp(2N − 6)

gauge group. The SU(2N − 1) matter content is ⊕ (2N − 5) · ¯ plus singlets. This

theory has a dynamically-generated superpotential [19], and this combines with the

tree-level superpotential to give a runaway behavior. This again shows that there is

no supersymmetric vacuum for small fields.
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2.2 The “Lepton” Branch

We now consider the branch where 〈L〉 6= 0. Along this branch, we have

〈L〉 =




v112
. . .

vN−112

0

0




. (2.15)

Ignoring global U(1) factors, this breaks the gauge and flavor symmetries down to

Geff = SU(2) × SU(2N − 1) ×
[
SU(2)N−1

]
, (2.16)

with light fields

L′ ∼ ( , 1) × 1,

Q′ ∼ ( , ) × 1,

Ū ′ ∼ (1, ¯) × 1,

D̄′ ∼ (1, ¯) × 1,

L′′ ∼ (1, 1) × ,

L′′′ ∼ (1, 1) × ,

(2.17)

and superpotential

W = λQ′L′Ū ′. (2.18)

(Each SU(2)N−1 representation is denoted by a SU(2N − 2) representation that is

understood to be decomposed under SU(2N − 2) → SU(2)N−1.) The only flat direc-

tions are excitations of L, which correspond to the fields L′′ and L′′′ in Eq. (2.17).

The remaining light fields have quartic potentials from the D-term potential.

We will assume that the SU(2N − 1) group in the effective theory above is stronger

than the SU(2). This is always true for N ≥ 6, where the SU(2) group is not

asymptotically free. For N ≤ 5, it is sufficient to assume that the in the fundamental

theory ΛSU ≫ ΛSp. In the effective theory, the SU(2N − 1) gauge group has 2 flavors,

and if the fields Q′, Ū ′, and D̄′ were flat directions, the model would have a runaway

supersymmetric vacuum where these fields are infinite. The D-term potential does

not allow these fields to run away, and so there is no supersymmetric vacuum in
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this region of moduli space. (This is the same mechanism that operates in the 3–2

model, but the present model has classical flat directions.) Since we have explored

all regions of the classical moduli space, we conclude that supersymmetry is broken

in this theory.

We would like to know whether there are local minima on the lepton branch of

the moduli space, and if so, whether these have lower energy than the local minimum

found on the baryon branch. For ΛSU ≫ ΛSp we can show that the only minimum is

the one found on the baryon branch above. The reason is simply that if we minimize

the energy with 〈L〉 held fixed, the energy depends only on the scale ΛSU,eff where

the SU(2N − 1) gets strong. The scale at which the unbroken SU(2) gauge group

becomes strong is irrelevant, because we have seen that supersymmetry is broken in

the limit where we ignore the non-perturbative effects of the SU(2) gauge interactions.

The scale 〈L〉 appears in the effective theory through the scale ΛSU,eff , but otherwise it

only controls the size of higher-dimension operators that give only small corrections to

the vacuum energy. Therefore, we expect that the vacuum energy as a function of 〈L〉
is V (〈L〉) ∼ |ΛSU,eff(〈L〉)|4. This grows with 〈L〉, and so we do not expect a vacuum

for large 〈L〉. The analysis above breaks down for 〈L〉 ∼ ΛSU. For 〈L〉 ≪ ΛSU, we can

use the confined description of the SU(2N − 1) dynamics of the previous subsection,

so the only remaining possibility is a vacuum with 〈L〉 ∼ ΛSU. However, in this case,

we expect the vacuum energy to be of order |ΛSU|4, which is larger than the vacuum

energy Eq. (2.11) found on the baryon branch. We conclude that the global minimum

of this theory is on the baryon branch.

The case where ΛSp ≫ ΛSU appears to be more complicated, and we cannot rule

out the possibility that the global minimum is on the lepton branch in that case.

For N ≤ 5 and ΛSp ≫ ΛSU, we have not explicitly shown that there is no su-

persymmetric vacuum on the lepton branch. However, we have examined the entire

moduli space for ΛSU ≫ ΛSp and shown that there is no supersymmetric vacuum. If

there were a supersymmetric vacuum in the limit ΛSp ≫ ΛSU, there would have to

be a critical condition on the interaction scales ΛSp and ΛSU that gave the critical

values at which the supersymmetric vacua are lifted. However, the moduli space of

supersymmetric vacua structure is a holomorphic function of ΛSp and ΛSU [20] and

so the critical conditions must be holomorphic functions of ΛSp and ΛSU. This means

there can be no critical lines in the space of gauge couplings separating a phase where

supersymmetry is broken from a phase where it is unbroken [21]. This means that

supersymmetry is broken also in the limit ΛSp ≫ ΛSU.

7



2.3 The Sp(4) × SU(3) Model

We now consider the special case N = 2, where the superpotential Eq. (2.7) is

Weff ∼ (Ū3)1/3. (2.19)

The vacuum is forced away from the origin for small U , but the potential becomes

constant for 〈Ū〉 ≫ ΛSU. The location of the true vacuum therefore depends on

the form of the Kähler potential. Yukawa couplings give corrections to the Kähler

potential that push the field to the origin of moduli space, while gauge corrections

do the reverse. Since Sp(4) is asymptotically free, the contribution from the Yukawa

coupling will dominate for large Ū , while the Sp(4) gauge contributions will dominate

for small Ū . For a range of couplings, there is a supersymmetry-breaking vacuum at

large field values where the theory is fully calculable. This is an instance of the

inverted hierarchy mechanism [22] similar to the ones in Refs. [9, 10].

3 Composite Messenger Models

In this Section, we consider realistic models of gauge-mediated supersymmetry break-

ing based on the models analyzed in Section 2. The model we consider is based on

the N = 3 model of the previous section. This has a global SU(5) symmetry into

which we embed the standard model gauge group SU(3)C × SU(2)W × U(1)Y in the

usual way. (We refer to this embedding as SU(5)SM for brevity.) The gauge group is

therefore

Sp(6) × SU(5) × SU(5)SM (3.1)

with matter content

Q ∼ ( , , 1),

L ∼ ( , 1, ),

Ū ∼ (1, ¯, ¯),

D̄ ∼ (1, ¯, 1),

D ∼ (1, 1, ),

(3.2)

and a tree-level superpotential

W = λQLŪ +
1

M3
(Ū4D̄)D. (3.3)
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This model differs from the models analyzed above only in that it contains an addi-

tional field D (which cancels the standard-model anomalies) and there is a higher-

dimension term in the tree-level superpotential. These new features are important

for the phenomenology of the model, but they do not affect the qualitative features

of the Sp(6) × SU(5) gauge dynamics discussed above. This model therefore has a

supersymmetry-breaking vacuum with

〈Ū〉 ≃ ΛSU

4π
, F ≃ 〈FŪ〉 ≃

λ5/4Λ
1/4
SU Λ

7/4
Sp

4π
. (3.4)

The gauge symmetry is broken in the pattern

SU(5) × SU(3)C × SU(2)W × U(1)Y → SU(3)C × SU(2)W × U(1)Y . (3.5)

Supersymmetry breaking is communicated to the standard-model fields via the mes-

senger pairs (Q,L), (D, D̄), and the heavy SU(5) gauge bosons. (We are using a

Higgs description of the dynamics.) The masses of the messengers Q and L can be

written

δL =
∫
d2θMQLQL+ h.c.

+ BQLφQφL + h.c.

+ m2
Qφ

†
QφQ +m2

Lφ
†
LφL.

(3.6)

Here, MQL is a supersymmetric mass term, BQL is the “B-type” supersymmetry

breaking mass familiar from traditional gauge-mediated models, and m2
Q and m2

L are

soft (non-holomorphic) masses for the messengers. All of these terms are induced by

supersymmetry breaking, and we must estimate their size. The supersymmetric and

B masses are

MQL ≃ λ〈Ū〉 ≃ λΛSU

4π
, (3.7)

BQL ≃ λF. (3.8)

Using näıve dimensional analysis, the soft masses can be estimated from the gauge

exchange diagrams of Fig. 1 to be

m2
Q ≃ m2

L ≃ g4
SU

16π2

F 2

Λ2
SU

+ · · · ≃ 16π2F 2

Λ2
SU

. (3.9)

The messenger scale that sets the scale for the contributions of these messengers to

the standard model superpartner masses is

Mmess =
BQL

MQL
≃ 4πF

ΛSU
. (3.10)
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We see that M2
mess ≃ m2

Q ≃ m2
L, so the soft mass contributions to the standard-model

superpartner masses are comparable to the usual gauge-mediated contributions. The

soft mass contribution to the standard-model masses is not log enhanced from renor-

malization group running, since the supersymmetric mass is close to the scale ΛSU

where the contribution is generated (as long as λ ∼ 1).

Fig. 1. Contributions to the soft scalar mass in the Higgs description.

In the Higgs picture we are using, the gauge group SU(5) × SU(5)SM is sponta-

neously broken down to the diagonal SU(5), which we interpret as the low-energy

SU(5)SM. This theory therefore contains gauge messengers, but their contribution is

not calculable because the SU(5) gauge group is strongly coupled. (At one loop, the

gauge messenger contribution to the scalar masses is negative [23], but there is no

reason to believe that this sign of this result is correct for the strongly coupled case.)

The size of the supersymmetry-breaking masses is the same order as the Q and L

messengers discussed above.

The fields D and D̄ also act as messengers, and they have mass terms analogous

to those discussed above for Q and L. The supersymmetric and B masses are

MDD̄ ≃ 〈Ū〉4
M3

≃ 1

M3

(
ΛSU

4π

)4

, (3.11)

BDD̄ ≃ 〈Ū〉3F
M3

≃ F

M3

(
ΛSU

4π

)3

. (3.12)

The D̄ soft masses can again be estimated from the diagrams of Fig. 1 to be

|m2
D̄| ≃

16π2F 2

Λ2
SU

. (3.13)

Because D does not feel the strong SU(5) gauge interactions, m2
D ≪ m2

D̄. We there-

fore have (BDD̄/MDD̄)2 ≃ m2
D̄, so the D̄ soft masses are important for communicating
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supersymmetry breaking. In fact, the soft mass contribution is enhanced by renor-

malization group evolution from the scale ΛSU to the scale MDD̄ where the messengers

are integrated out. This gives a contribution to the squark masses [24]

δm2
q̃ ∼ −

(
g2
3

16π2

)2

m2
D̄ ln

ΛSU

MDD̄

. (3.14)

This contribution is negative if m2
D̄ > 0. The logarithm cannot be small: even if

ΛSU = M , the logarithm is of order 10. It therefore seems sensible to assume that

this term dominates. We see that this model only works if we make the dynamical

assumption m2
D̄ < 0. In this case, we require that M2

DD̄
>∼ |m2

D̄|, so that the super-

symmetric mass be large enough that 〈D̄〉 = 0. This gives the constraint

ΛSU >∼ 4π(MmessM
3)1/4. (3.15)

If we take Mmess ≃ 10 TeV, and identify M with the reduced Planck mass M∗ ≃
2 × 1018 GeV, we have ΛSU >∼ 7 × 1015 GeV. In order to solve the flavor problem,

we want the the supergravity-mediated contribution to the sparticle mass-squared

m3/2 ∼ F/M∗ to be <∼ 1% of the gauge-mediated contribution. This is satisfied for

ΛSU <∼ 2 × 1016 GeV. (3.16)

We see that if m2
D̄ < 0 there is a window where these models can be realistic even

if the scale of the higher dimension operator is the Planck scale. For this choice of

parameters,

√
F ∼ 3 × 109 GeV. (3.17)

In this model, the next-lightest supersymmetric particle (NLSP) will be very long-

lived, and may decay late enough in the history of the universe that its hadronic final

states can induce additional contributions to nucleosynthesis, spoiling the agreement

between the standard theory and experiment. The authors of Ref. [10] obtained a

bound of
√
F <∼ 108 GeV from these considerations. However, this bound is rather

model-dependent: it assumes R-parity conservation, and is invalid in inflationary

models with a reheat temperature below the NLSP mass.

Alternatively, if we identify the scale M of the higher-dimension operator with

the grand unification scale, we obtain ΛSU >∼ 1014 GeV and
√
F >∼ (3 × 108 GeV),

which may be safe given the uncertainties involved in these estimates. In any case,

the models will work for sufficiently small M .
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In these models, the dominant contribution to the standard-model scalar masses

is given by the log-enhanced contribution of the (D, D̄) messengers

m2
q̃ ∼

(
g2

16π2

)2 (
4πF

ΛSU

)2

ln
ΛSU

MDD̄

, (3.18)

where MDD̄ is given by Eq. (3.11). The gaugino masses are given by

mλ ∼ g2

16π2

4πF

ΛSU

. (3.19)

Therefore, in these models the scalar masses are heavier than the corresponding gaug-

ino masses compared to minimal gauge-mediated models. However, the minimal

gauge-mediation relations between squark and slepton masses (say) are still satisfied.

4 Conclusions

We have discussed a new class of supersymmetry-breaking models based on direct

product groups with a tree-level superpotential. These models have a large space of

flat directions at tree level, but nonetheless break supersymmetry via the mechanism

of s-confinement. These models have a number of attractive features: they contain

no dimensionful parameters, and large global symmetries are possible. By embedding

the standard model gauge group in the global symmetry of a particular model, we

have found that a realistic superpartner spectrum is possible provided that a soft

mass term generated by the strong dynamics is negative. An interesting direction to

explore is to consider a variation of this model in which the light composite fermions

are identified with standard-model fermions [25].
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Appendix: More Supersymmetry Breaking by S-confinement

In this Appendix, we analyze some additional models related to those in the main

text. The models have gauge and flavor symmetry group

G = Sp(2N) × SU(5) × [SU(2N − 1) × U(1) × U(1)R], (A.1)

where the global symmetries are written in brackets. The matter content is

Q ∼ ( , ) × (1; 1, 1),

L ∼ ( , 1) × ( ;− 5
2N−1

,− 3
2N−1

),

Ū ∼ (1, ¯) × (¯;−2N−6
2N−1

, 2N+2
2N−1

),

D̄ ∼ (1, ¯) × (1;−6,−12),

(A.2)

and there is a tree-level superpotential

W = λQLŪ. (A.3)

For N = 3, this is one of the models discussed in the main body of the text.

The models have been constructed so that the Sp(2N) factor has s-confining dy-

namics. This can be used to analyze the model for ΛSp ≫ Λ5, in a region of moduli

space where all vacuum expectation values are small compared to ΛSp. In this regime,

the theory has a confined description in terms of composite chiral superfields. The

effective symmetry group is

Geff = SU(5) × [SU(2N − 1) × U(1) × U(1)R], (A.4)

with matter content (after integrating out massive fields)

MQQ = QQ ∼ × (1; 2, 2),

MLL = LL ∼ 1 × ( ;− 10
2N−1

,− 6
2N−1

),

D̄ ∼ ¯ × (1;−6,−12),

(A.5)

with vanishing effective superpotential. (The Ū equation of motion sets the dynam-

ically generated superpotential to zero.) The low-energy theory consists of some

singlets, together with a SU(5) gauge theory that is believed to break supersym-

metry through non-calculable strong dynamics [18]. However, we cannot conclude

from this that supersymmetry is broken. The point is that supersymmetry breaking
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will induce a non-calculable potential for the classical flat directions MLL, and this

potential may make MLL run away from the origin to a regime where the confined

description is no longer valid. (In fact, we will show that for N ≥ 3 the theory has

a runaway supersymmetric vacuum.) We must analyze the full moduli space of the

theory before we can conclude that supersymmetry is broken. The analysis differs for

various values of N , and we proceed on a case-by-case basis.

A.2 N = 1: Minimal Deconfinement

This theory has no classical flat directions when the superpotential is taken into

account. In fact this is the minimal “deconfined” description of the model with gauge

group SU(5) and matter content ⊕ ¯ [18].

It is interesting that this theory has a calculable limit. If we turn off the SU(2)

gauge coupling, the theory has a classical moduli space that can be parameterized by

the SU(2) doublets MQD̄ = QD̄ and L, subject to the constraint

ǫαβ(L)αMβ
QD̄

= 0. (A.6)

Far out along these flat directions, SU(2) is completely broken, SU(5) is broken down

to SU(4), and all fields charged under SU(4) are massive. Gaugino condensation

in the SU(4) Yang–Mills theory generates a dynamical superpotential for the flat

directions

Wdyn ≃ 1

16π2
(Λ5)

13/4



MLL

M2
QD̄




1/8

. (A.7)

This superpotential forces MQD̄ to run away to infinity.

If we now turn on an SU(2) gauge coupling, all flat directions are lifted at the

classical level. The potential due to SU(2) gauge couplings is small near the origin

and grows for large fields. Therefore, for small values of the SU(2) gauge coupling,

the minimum of the potential will be at large values of 〈MQD̄〉 and 〈L〉, and super-

symmetry is broken. This mechanism for supersymmetry breaking is the same as in

the “3–2 model” [4]. We will not analyze this model further.

This analysis proves that there is no supersymmetric vacuum in the parameter

region Λ5 ≫ Λ2. However, as discussed in the main text, there can be no phase

transitions as a function of Λ5/Λ2, and so supersymmetry is broken also in the limit

Λ2 ≫ Λ5, i.e. in the original SU(5) model.

The supersymmetric SU(5) model has also been related to a calculable model in

Ref. [26] by adding additional vector-like matter and tree-level superpotential terms,

and our conclusions are in agreement.
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A.3 N = 2: Supersymmetry Breaking via Supersymmetry Breaking

The classical flat directions can be parameterized by the gauge-invariant operator

MLL = LL ∼ (¯;−10
3
,−2). (A.8)

Now consider the effective theory far out along this flat direction. Näıvely, it

appears that the MLL flat direction cannot be lifted, since the symmetries do not

allow a dynamical superpotential for this field. However, a careful analysis of the

effective theory in this region of moduli space shows that this argument is not correct

because supersymmetry is broken!

To understand this, note that in terms of the elementary fields, we are considering

vacua with

〈L〉 =




v

v

0

0



, (A.9)

and all other vacuum expectation values vanishing. This breaks Sp(4) → SU(2), and

gives a tree-level mass λv to two components of Q and Ū . Working out the effective

SU(2) × SU(5) gauge theory, one finds that it has precisely the matter content of

the theory considered in the previous subsection (with three additional singlets). As

shown above, this theory breaks supersymmetry dynamically, and this supersymme-

try breaking is communicated to the flat fields MLL by higher-dimension terms in the

effective Kähler potential.

This model serves as a reminder that an analysis of the flat directions using the

standard arguments based on holomorphy, symmetry, and classical limits is correct

only if the strong sector of the theory does not itself break supersymmetry. This

subtlety is not present in models with no tree-level superpotential, since in those

theories the effective theory at a generic point in moduli space is either trivial (the

gauge group is completely broken) or is a pure Yang–Mills theory; in either case,

the low-energy theory does not break supersymmetry. However, in models with a

tree-level superpotential, the classical equations of motion can force the theory to

a singular vacuum where the unbroken gauge group has charged matter fields. As

illustrated here, such a low-energy theory can break supersymmetry and invalidate a

näıve application of Seiberg’s arguments.
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A.4 N ≥ 3: Supersymmetry Restoring “Phase Transition”

The theory has a classical flat directions that can be parameterized by the gauge-

invariants

MLL = LL ∼ ( ;−2,− 6
2N−1

),

B̄U = Ū4D̄ ∼ ( ;−20N−30
2N−1

, −16N+20
2N−1

),

B̄D = Ū5 ∼ (1;−10N−30
2N−1

, 10N+10
2N−1

).

(A.10)

We consider the classical vacuum

〈Ū〉 = (u15 0 ) , 〈L〉 =




v112
. . .

vN−312

04

0

0




. (A.11)

(The fact that 〈L〉 has rank 2(N−3) is enforced by ∂W/∂Q = 0.) This breaks SU(5)

completely and breaks Sp(2N) → Sp(6)×U(1). All light matter fields are uncharged

under Sp(6), and Sp(6) gaugino condensation gives rise to a dynamical superpotential

Weff ∼
(

B̄D

MN−3
LL

)1/4

. (A.12)

For N ≥ 4, this forces MLL to run away, and there is a supersymmetric vacuum at

infinity. It may be that there is a local supersymmetry-breaking minimum near the

origin, but we cannot determine this from the present analysis. Another possibility

is that the composite singlet in the s-confined description has a potential that slopes

away from the origin, and the true vacuum is outside the range of validity of the

s-confined description.

For N = 3, both the Sp(6) and SU(5) groups confine. The superpotential

Eq. (A.12) is the same as the one discussed in the main text for the regime Λ5 ≫ Λ6.

For Λ6 ≫ Λ5, the analysis in the first part of this Appendix shows that there is

no supersymmetric vacuum for small values of the SU(5) singlet fields MLL, so we

understand how supersymmetry is broken in this case as well.
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